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GENERATION AND EVOLUTION OF CAVITATION IN MAGMA

UNDER DYNAMIC UNLOADING

UDC 532.787:550.3M. N. Davydov,1 V. K. Kedrinskii,1

A. A. Chernov,2 and K. Takayama3

The full system of equations for the problem of rarefaction-wave passage over the magma-melt col-
umn in the gravity field is derived with the use of the kinetic theory of phase transformations, and
the problem is numerically solved. With allowance for diffusion zones and nucleation frequency as a
function of supersaturation, the dependence of the number of cavitation nuclei formed in the course
of phase transformations behind the rarefaction-wave front is found. The dynamics of the size distri-
bution of cavitation bubbles along the magma-melt column (1 km) whose viscosity varies dynamically
as a function of the concentration of dissolved water is studied.
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Introduction. Volcanic eruptions have versatile forms of manifestation. A typical form for volcanoes is the
so-called extrusive eruption [1] in which a red-hot flow of basalt magma is “squeezed out” from the channel. The
mechanism of this process is determined by a global decrease in pressure due to magma uprising to the upper levels
of the Earth crust and, as a consequence, by liberation of dissolved substances in the form of gas bubbles, which
increases the bubble pressure in the magma chamber. It is an excess of this pressure over a certain critical value
that leads to extrusive eruption. It was noted [1] that silica-rich magma is noticeably colder, it can be ten orders
of magnitude more viscous than basalt magma, and its eruption has an explosive character.

The volcano itself is actually a hydrodynamic system consisting of the magma chamber located in the upper
crust at a depth of 7–10 km and filled by high-pressure hot magma [50–70% (wt.) of melted SiO2], a vertical channel
(“conduit”) separated from the chamber by a diaphragm, whose diameter can reach dozens of meters, and a plug
closing the channel (diaphragm). The latter is formed in the period between eruptions and consists of hardened
magma. Shear motion of the Earth crust caused, in particular, by earthquakes [1] can destroy the plug, which
leads to rapid unloading of magma and, as a consequence, to its eruption. This is in line with a typical scheme
of a hydrodynamic rarefaction tube with the high-pressure section filled by a liquid, the working sections are both
the high-pressure section where the initial stage of cavitation development behind the front of the rarefaction wave
propagating over the compressed liquid after diaphragm breakdown is considered and the low-pressure chamber
where the process of liquid spreading is studied.

Magma possesses unique physical and chemical properties. The most important of them are the presence
of dissolved substances, such as carbon dioxide, sulfur, and water whose concentration can reach 5–7% (wt.), and
the high viscosity, which varies from 102 to 1012 Pa · sec depending on the concentration of the dissolved gas and
crystallites contained therein. As it is rather difficult to study real volcanic eruptions because they are rare and
unpredictable, simulations of these phenomena within the framework of mechanics of continuous media is very
important.
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Fig. 1. Development of cavitation in magma under dynamic un-
loading: 1) uniform flow; 2) bubbly liquid; 3) fragmentation
zone; 4) gas suspension.

Among many papers dealing with this issue, let us note the series of investigations [2–6] with an attempt to
simulate eruption dynamics in the general formulation. A large class of papers involves consideration of particular
processes that accompany this phenomenon. These are papers on growth dynamics of a single bubble in a viscous
gas-saturated melt [7–9] and associated thermal effects [10], mechanism of magma solidification under decompression
[11, 12], etc.

Nevertheless, despite significant efforts undertaken to study this phenomenon, there are still many issues
that require special consideration. In particular, the initial stage of eruption, when cavitation nuclei are generated
in magma under rapid unloading, has not been adequately studied. The present paper deals with modeling of this
process in heavy magma and studying the growth dynamics of cavitation bubbles in a medium with dynamically
varying viscosity due to diffusion of the dissolved gas.

Formulation of the Problem. A vertical column of a gas-saturated magma melt of height H in the
gravity field is adjacent to the magma chamber at the bottom and is separated by a diaphragm from the ambient
medium on the top (atmospheric pressure is denoted by p0). We introduce a z axis directed vertically upward
with the origin at the column–chamber interface. The initial pressure in magma in the column–chamber system
corresponds to the pressure of magma in the chamber with allowance for hydrostatics: pi(z) = pch − ρ0gz, where
ρ0 is the magma density and pch is the pressure at z = 0.

We assume that the gas dissolved in magma has initially an equilibrium concentration Ceq whose dependence
on pressure p is determined by Henry’s law. For water dissolved in the magma melt, this dependence has the form
[13]

Ceq(p) = KH
√

p , (1)

where KH is Henry’s constant. Correspondingly, the dependence of the initial concentration Ci of the gas dissolved
in magma on the z coordinate is determined by the relation Ci(z) = Ceq(pi(z)).

At the initial time (t = 0), the diaphragm confining the melt is broken, the surface z = H becomes free,
and a rarefaction wave starts propagating vertically downward over the magma. The gas dissolved in magma is
supersaturated behind the wave front, which results in spontaneous nucleation and growth of gas bubbles in the
melt volume. This process is schematically shown in Fig. 1. The pressure in the magma chamber (at the boundary
z = 0) is retained constant during the entire process.

To describe the process considered, we write the one-dimensional equations of dynamics of a viscous liquid
containing gas bubbles:

— continuity equation

∂ρ

∂t
+

∂ (ρv)
∂z

= 0; (2)
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— Navier–Stokes equation
∂v

∂t
+ v

∂v

∂z
= −1

ρ

∂p

∂z
− g +

1
ρ

∂

∂z

(
µ

∂v

∂z

)
. (3)

Here, v, ρ, p, and µ are the mean velocity, density, pressure, and viscosity of the medium, respectively.
Equations (2) and (3) should be supplemented by the equation of state. In the present work, we use the

Tait equation [14] where the density of the liquid component is expressed from the equation of state of a two-phase
mixture via its mean density and volume concentration of the gas phase k:

p = p0 +
ρ c2

n

{( ρ

ρ0(1− k)

)n

− 1
}

(4)

(c is the velocity of sound in the liquid and n is the constant in the Tait equation).
The viscosity of the magma melt as a function of the temperature T and mass concentration C of the

dissolved gas is determined as [15, 16]
µ = µ∗ exp {Eµ(C)/(kBT )}, (5)

where Eµ(C) = E∗
µ(1 − kµC) is the activation energy, E∗

µ is the activation energy for the “dry” melt, kµ is the
empirical coefficient, µ∗ is the preexponent, and kB is the Boltzmann constant. It is seen from Eq. (5) that degassing
of the melt increases its viscosity by several orders of magnitude.

The volume concentration k of bubbles formed behind the rarefaction-wave front is determined on the basis
of the results obtained by Chernov et al. [17] who showed that the problem of the global kinetics of nucleation and
growth of gas bubbles in the melt supersaturated as a result of decompression is similar to the problem of the global
kinetics of spontaneous crystallization of a supercooled melt, which was considered by Kolmogorov [18]. Under the
condition that nucleation of new centers is possible only in the non-crystallized region, Kolmogorov [18] obtained
the time dependences of the fraction of the crystalline mass and the number of crystallization centers for a given
growth rate of the crystals and for a nucleation frequency assumed to be uniform over the entire melt volume, which
is in line with the approximation of isothermal growth of the crystals. Let us show that the solution obtained in
[18] with a certain modification can be applied to the problem considered.

As was noted above, decompression leads to spontaneous nucleation of gas bubbles in the melt. The frequency
of their nucleation is determined by the expression

J = J∗ exp (−W∗/(kBT )), (6)

where J is the frequency of homogeneous nucleation, W∗ = 16πσ3/(3∆p2) is the work spent on formation of a
critical nucleus in the homogeneous process, J∗ = (2n2

gVgD/dg)(σ/kBT ))1/2 is the preexponent [8], σ is the surface
tension on the melt–gas interface, ng is the number of potential nucleation centers per unit volume of the melt, which
is assumed to be equal to the number of molecules of the gas dissolved in the melt, D is the diffusion coefficient
of the gas in the melt, Vg is the volume of the gas molecule, dg is the mean distance between the neighboring gas
molecules in the melt, and ∆p = ps − p is the difference between the saturation pressure ps(C) of the dissolved gas
and the current pressure p. The value of ∆p can be expressed in terms of melt supersaturation ∆C = C − Ceq(p)
with the use of Henry’s law (1). The nucleation frequency as a function of supersaturation is plotted in Fig. 2.

The dynamics of a single bubble in a viscous liquid is described by the Rayleigh equation with a viscous
term [14]

RR̈ + (3/2)Ṙ2 = ρ−1(pg − p) + 4νR−1Ṙ, (7)

where R is the bubble radius, pg is the gas pressure in the bubble, p is the ambient pressure, and ν = µ/ρ is the
kinematic viscosity. Because of the high viscosity of magma melts, the inertial terms in Eq. (7) can be neglected.

The pressure pg is determined by the diffusion gas flow from the supersaturated melt to the bubble, which
is found with the use of the quasi-steady solution of the equation of gas diffusion in the melt

C(r) = Ci − (Ci − Ceq(pg))R/r, (8)

where r is the radial coordinate and Ci is the gas concentration far from the bubble. Then, we have
dmg

dt
= 4πR2ρD

(∂C

∂r

)
R

= 4πRρD(Ci − Ceq(pg)), (9)

where mg is the mass of the gas in the bubble.
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Fig. 2. Nucleation frequency versus supersaturation.
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Fig. 3. Schematic of the dependences of the gas concentration (C) and nucleation frequency (J) on
the coordinate r: 1) bubble; 2) diffusion layer; 3) nucleation region.

System (7)–(9) should be supplemented by the equation of state of the gas in the bubble (the gas is assumed
to be ideal)

(4/3)pgR
3 = (mg/M)kBT, (10)

where M is the molecular weight of the gas.
It follows from relation (8) that the gas concentration in the melt decreases with approaching the growing

bubble, i.e., a diffusion boundary layer is formed around the bubble (Fig. 3). Because of the strong dependence of
the nucleation frequency on supersaturation [see Eq. (6) and Fig. 2], we can assume in the first approximation that
nucleation of bubbles occurs only outside the diffusion layer (domain 3 in Fig. 3), and the nucleation frequency in this
domain can be assumed to be equal to the frequency far from the bubble. Though nucleation of new bubbles inside
the diffusion layer is possible, but it does not make any significant contribution to the global gas-release process,
because the nucleation frequency in this domain is substantially lower than outside this domain. The diffusion-layer
thickness rD is determined from the condition J(rD)/J(r → ∞) = 1/10. Substituting the dependence for the
nucleation frequency (6) and taking into account Eq. (8), we obtain

rD = æR,

where æ = 64πσ3/(3kBT (pi − p)2(1 +
√

p/pi ) ln 10).
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The information given above allows us to modify the solution obtained in [18], as applied to gas-release
kinetics. By analogy between the crystallite volume and the volume of the diffusion layer around a single bubble,
we have

XD(t) = 1− exp
(
−

t∫
0

J(τ) vD(t− τ) dτ
)
, (11)

where XD is the total volume of diffusion layers around the bubbles per unit volume of the melt and
vD = (4π/3)(æ3 − 1)R3 is the volume of the diffusion layer around a single bubble.

Then, the number of bubbles Nb formed in a unit volume during the time t is

Nb(t) =

t∫
0

J(τ) (1−XD(τ)) dτ. (12)

It follows from relations (11) and (12) that bubble nucleation is terminated when the diffusion layers of the
growing bubbles completely cover the entire volume (XD → 1). According to the estimates [17], the characteristic
time of nucleation is significantly smaller than the time of the entire gas-release process, i.e., the main mass of the
gas is released at the stage of diffusion growth of the bubbles formed.

Knowing the dependence of the number of bubbles formed in magma on time and their growth rate, we can
find the volume fraction κ of bubbles generated in a unit volume of the melt:

κ =
4π

3

t∫
0

Ṅb(τ)R3(t− τ) dτ. (13)

Taking into account that the volume of the medium increases in the course of bubble growth, we obtain the relation
k = κ/(1 + κ).

Let us use the following dimensionless variables (marked by the tilde): ρ̃ = ρ/ρ0, µ̃ = µ/µ0, p̃ = p/p0,
z̃ = z/z0, ṽ = v/v0, t̃ = t/t0 where t0 = z0/v0, R̃ = R/z0, p̃g = pg/p0, m̃g = mg/m0 where m0 = (4π/3)ρ0z

3
0 , and

J̃ = J/J0. Here µ0 = µ∗ exp {Eµ(Ci(pch))/(kBT )} is the initial viscosity of magma at z = 0, J0 = J∗ e−G is the
characteristic nucleation frequency, and G = 16πσ3/(3p2

chkBT ) is the Gibbs number. Then, system (2)–(13) can be
written in dimensionless variables.

The equations of dynamics of the liquid are
∂ρ̃

∂t̃
+

∂ (ρ̃ṽ)
∂z̃

= 0,
∂ṽ

∂t̃
+ ṽ

∂ṽ

∂z̃
= −Eu

ρ̃

∂p̃

∂z̃
− 1

Fr
+

1
Re

1
ρ̃

∂

∂z̃

(
µ̃

∂ṽ

∂z̃

)
,

µ̃ = exp
E∗

µkµ(Ci(pch)− C)
kBT

, p̃ = 1 +
c̃2

n

{( ρ̃

1− k

)n

− 1
}

,

where Eu = p0/(ρ0v
2
0) is the Euler number, Fr = v0/(gt0) is the Froude number, Re = z0v0/ν0 is the Reynolds

number, and ν0 = µ0/ρ0. If we assume that v0 = (p0/ρ0)1/2, z0 = p0/(ρ0g), and t0 = (1/g)(p0/ρ0)1/2, the Euler
and Froude numbers become equal to unity, and the Reynolds number takes the form Re = (p0/ρ0)3/2/(ν0g).

The equations of bubble nucleation and growth kinetics are

k = κ/(1 + κ),

κ =
4π

3
J0z

3
0t0

t̃∫
0

J̃(τ̃)R̃3(t̃− τ̃) exp
{
− 4π

3
J0z

3
0t0(æ3 − 1)

τ̃∫
0

J̃(τ̃ ′)R̃3(τ̃ − τ̃ ′) dτ̃ ′
}

dτ̃ ,

J̃ = exp {−G[(p̃ch/∆p̃)2 − 1]}, R̃ ¨̃R +
3
2

˙̃R
2

=
Eu
ρ̃

(p̃g − p̃) +
4ν̃

Re

˙̃R
R̃

,

1
3

Re PrD
dm̃g

dt
= R̃(Ci − Ceq(p̃g)), p̃gR̃

3 = (ρ0/p0)(m̃g/M)kBT.

Here PrD ≡ Sh = ν0/D is the Prandtl (Sherwood) number; as in the momentum equation, Eu = 1 in the Rayleigh
equation.
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Fig. 4. Pressure (a) and velocity of magma (b) as functions of z for t = 0.21 (1), 0.42 (2), and 0.67 sec (3).

The constructed system of equations completely determines the dynamic of rarefaction-wave passage over the
magma-melt column in the gravity field and allows finding the dependence of the number of cavitation nuclei formed
in the course of phase transformations behind the rarefaction-wave front and the size distribution of cavitation
bubbles over the entire length of the magma-melt column.

Calculation Results. The calculations were performed for the following problem parameters typical of
explosive volcanic eruptions: magma-column height H = 1 km, pressure in the volcano center located at a depth
of approximately 5–7 km, pch = 1700 atm, and temperature T = 1150 K, which corresponds to the melting point
of magma at a pressure p = pch [12]. The following values of magma properties are used in the calculations:
ρ0 = 2300 kg/m3, KH = 4.33 ·10−6 Pa−1/2, D = 2 ·10−11 m2/sec, σ = 0.076 J/m2, E∗

µ = 5.1 ·10−19 J, kµ = 11, and
µ∗ = 10−2.5 Pa · sec. Correspondingly, the numbers of similarity in the problem have the following order: Re ≈ 1,
PrD ≈ 1011, and G = 16. For simplicity, all calculation results are presented in dimensional variables.

Figure 4 shows the pressure fields and the distributions of the liquid velocity over the column height for
three different time instants. It is seen from Fig. 4b that the liquid is accelerated to a velocity v ≈ 35 m/sec under
the action of pressure behind the rarefaction-wave front, which agrees with the estimate that can be derived from
simple considerations: pch/(ρ0c) ≈ 30 m/sec. At the time described by curve 3, the rarefaction wave reaches the
bottom of the column (coordinate z = 0), is reflected from the bottom, and is transformed to a compression wave.
If the wave passes over the column many times, the liquid velocity increases.

Figure 5 shows the number of nucleation centers formed in the process as a function of z. The function has a
stepwise shape because the characteristic nucleation time is much smaller than the characteristic time of the entire
process [17]. This is seen from Fig. 6, which shows the time evolution of the bubble-nucleation rate in a narrow
time interval for z = 0. Note, the numbers of bubbles obtained in the present work are slightly smaller than those
determined in [17]. The reason is that decompression was assumed to be instantaneous in [17], whereas the pressure
wave in the present problem has a gently sloping front (see Fig. 4a), and nucleation of bubbles occurs at lower
values of supersaturation and, hence, at lower frequencies. In addition, the bubble-growth mechanism [17] ignored
the influence of viscosity manifested at the initial stage of growth and restraining the latter, which was taken into
account in the present work.

The model presented allows calculation of the size distribution of the bubbles along the column. The distri-
bution function in Fig. 7 is constructed for three different times. Two stages of bubble growth can be distinguished:
the initial stage when the bubble growth is restrained by viscous tension forces and the diffusion stage when the
bubble-growth dynamics is determined only by the diffusion gas flow from the supersaturated melt to the bubble,
which is described by the root dependence of the bubble size on time [7].

This work was supported by INTAS (Grant No. 01-0106), Russian Foundation for Basic Research (Grant
No. 03-01-00274-a), Foundation “Leading Scientific Schools” (Grant Nos. NSh-2073.2003.1 and NSh-523.2003.1),
and Integration Project No. 22 of the Siberian Division of the Russian Academy of Sciences.
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Fig. 5. Number of bubbles versus z for t = 0.21 (1), 0.42 (2), and 0.67 sec (3).

Fig. 6. Number of bubbles as a function of time for z = 0.
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Fig. 7. Size distribution of bubbles along the column for t = 0.21 (1), 0.42 (2), and 0.67 sec (3).
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